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Statistical distance

We wish to construct a space of probability distributions with a distance defined on it. A
function s(a, b) is a distance between two points a and b if s obeys four requirements:

1. s(a, b) ≥ 0
2. s(a, b) = 0 ⇔ a = b
3. s(a, b) = s(b, a)
4. s(a, c) ≤ s(a, b) + s(b, c) (the triangle inequality)

Furthermore, the distance in a metric space is a metric gkl . In infinitesimal form:

ds2 = ∑
kl

gkl dakdal , (1)

where the dak’s are the components of the tangent vector to a. For a Euclidean space,
the metric is the identity tensor, and the distance between points a and a + da becomes
Pythagoras’ theorem:

ds2 = ∑
k

dakdak . (2)

Note that there is a difference between the upper and the lower indices. A vector
with lower indices is a covariant vector, while a vector with upper indices is contravariant.
We can represent this pictorially as [2]:

contravariant covariant scalar product
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The scalar product is a product (a contraction) between a contravariant and a covari-
ant vector (upper and lower indices). It corresponds to the number of sheets in the stack
that the arrow pierces. It is now easy to see that transformations on the space leave the
scalar product invariant: Distorting the arrow and the stack of sheets in equal measure
will not change the number of sheets that the arrow pierces. The contravariant vector is
the dual of the covariant vector, and they are related via the metric [1]:

a j = ∑
k

g jk ak and a j = ∑
k

g jk ak (3)

In other words, the contravariant and covariant forms of the metric are ”raising” and
”lowering” operators on the indices, and pictorially the vectors transform as

a j

g jk =⇒

ak

⇐= g jk

From the raising and lowering of the indices, we can derive a key property of the
metric that we will use in this lecture:

a j = ∑
k

g jk

(

∑
l

gklal

)

= ∑
kl

g jk gkl al ⇒ ∑
l

g jk gkl = δ j
l ≡ δ jl, (4)

where the second identity follows from the linear independence of the a j. The symbol

δ jl is the Kronecker delta. So the contravariant form of the metric g jk is the inverse of
the covariant metric g jk.

Next, the probability simplex is the convex space of probability distributions:

p

p′

p1

p2

p3
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This is a metric space, but the (Euclidean) distance between the two points p and
p′ is not necessarily the most useful distance function for probability distributions. We
can write down a general distance function between two probability distributions p and
p′ = p + dp in terms of the metric:

ds2 = ∑
jk

g jk dp jdpk . (5)

In general, the sum may be an integral.
Our next task is to find the most natural metric g jk of the simplex [3]. To this end

we construct the natural dual to the tangent vectors dp of a probability distribution
p, namely a random variable. In particular, observables (A) can be considered random
variables, with expectation value

〈A〉 ≡ ∑
j

A jp
j . (6)

The points of constant expectation value form surfaces in the dual space to dp. Conse-
quently, surfaces with incrementally increasing expectation values form a stack, which
makes for a natural covariant vector.

The metric is determined by a quadratic form of tangent (contravariant) vectors, or
alternatively, a quadratic form of covariant vectors. We choose to derive the metric from
the latter. For a pair of observables, the natural quadratic form is the so-called correlation

∑
jk

A jBk g jk = 〈AB〉 = ∑ A jB jp
j . (7)

From this we see immediately that g jk = δ j
k p j. Using ∑k g jk gkl = δ j

l we have

g jk =
δ j

k

p j
. (8)

And therefore

ds2 = ∑
jk

g jk dp jdpk = ∑
j

(dp j)2

p j
(9)

is the statistical distance between two infinitesimally close probability distributions p
and p + dp.

In practice, we are typically interested in two probability distributions that are sep-
arated by a finite distance. How can we say anything about that? We can substitute
p j = (r j)2 and using d(r j)2 = 2r jdr j:

ds2 = 4 ∑
j

(dr j)2 , (10)
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which can now be integrated directly:

s2 = 4 ∑
j

∣

∣

∣
r j − r′

j
∣

∣

∣

2
= 4 ∑

j

[

(r j)2 + (r′
j
)2 − 2r jr′

j
]

= 8(1 − r · r′) . (11)

So we expressed the statistical distance as the natural Euclidean distance for probability
amplitudes! Notice that we have not talked about quantum mechanics at all at this point:
Probability amplitudes arise naturally in the classical theory.

Suppose we are given an ensemble of systems characterised by one of two probabil-
ity distributions p and p′. The statistical distance between two probability distributions
is a measure of how hard it is to distinguish between them given a certain number of
samples. In general, two probability distributions are distinguishable after N samples
when1

Nds2 ≥ 1 . (12)

This is a form of the Cramér-Rao bound, and we would like to derive this bound more
formally.

Fisher information and the Cramér-Rao bound

In this section, I follow the derivation of Braunstein and Caves [4] to get the Cramér-
Rao bound. One of the steps in the derivation will lead to the concept of the Fisher
information.

We consider the situation where we wish to distinguish two probability distributions
p(θ) and p(θ′) on the basis of measurement outcomes x. We can then define the condi-
tional probability p(x|θ) of finding the outcome x given a system prepared in a state
ρ(θ). In quantum mechanics, this conditional probability is obtained from the state ρ(θ)
and the POVM for the measurement outcome Êx according to

p(x|θ) = Tr
[

Êxρ(θ)
]

, (13)

with
∫

dx Êx = 11. This can be related to the conditional probability of having a system
in state ρ(θ) given the measurement outcomes x via Bayes’ rule:

p(θ|x) =
p(x|θ) p(θ)

p(x)
≡ L(θ|x) , (14)

where L is the likelihood of θ. Telling the difference between the distributions p(θ) and
p(θ + δθ) therefore amounts to the estimation of the parameter θ if p(θ) and p(x) are
known (or can be inferred).

1We state this again in infinitesimal form, since the distinguishability criterion is tight only for in-
finitesimal distances. However, this formula does provide bounds for distinguishing probability distri-
butions separated by a finite distance.
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After these preliminary notes, we are now ready to proceed with the derivation of
the Cramér-Rao bound. Let T(x) be an estimator for θ based on the measurement out-
come x, and let ∆T ≡ T(x) − 〈T〉θ . The estimator is called unbiased when 〈T〉θ = θ,
where

〈A〉θ ≡
∫

dx p(x|θ)A . (15)

For any estimator T (biased or unbiased), and for N independent samples yielding mea-
surement outcomes x1, . . . , xN we have

∫

dx1 · · · dxN p(x1|θ) · · · p(xN |θ) ∆T = 0 . (16)

Taking the derivative to θ and using the chain rule yields

N

∑
i=1

∫

dx1 · · · dxN p(x1|θ) · · · p(xN |θ)
1

p(xi|θ)

∂p(xi|θ)

∂θ
∆T −

〈

d〈T〉θ
dθ

〉

= 0 , (17)

where we used that T does not depend on θ. This can be rewritten as

∫

dx1 · · · dxN p(x1|θ) · · · p(xN |θ)

(

N

∑
i=1

∂ ln p(xi|θ)

∂θ

)

∆T =

〈

d〈T〉θ
dθ

〉

. (18)

To this equation we can now apply the Schwarz inequality [5]:

|〈 f , g〉|2 ≤ 〈 f , f 〉〈g, g〉 . (19)

This yields

∫

dx1 · · · dxN p(x1|θ) · · · p(xN |θ)

(

N

∑
i=1

∂ ln p(xi|θ)

∂θ

)2

×
∫

dx1 · · · dxN p(x1|θ) · · · p(xN |θ) (∆T)2 ≥

∣

∣

∣

∣

〈

d〈T〉θ
dθ

〉
∣

∣

∣

∣

2

(20)

or

N F(θ) 〈(∆T)2〉θ ≥

∣

∣

∣

∣

d〈T〉θ
dθ

∣

∣

∣

∣

2

, (21)

where we introduced the Fisher information F(θ):

F(θ) ≡
∫

dx p(x|θ)

(

∂ ln p(x|θ)

∂θ

)2

=
∫

dx
1

p(x|θ)

(

∂p(x|θ)

∂θ

)2

. (22)

The error in the parameter θ is related to the estimator T in the following way:

δT ≡
T

|d〈T〉θ/dθ|
−θ . (23)
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Note that this is not the same as ∆T, as δT is related to the actual value of θ. The deriva-
tive removes the local difference in the units of the estimator and the parameter [4].
Note that a bias in the estimator T shows up as a non-zero 〈δT〉θ .

In order to derive the Cramér-Rao bound, we need to relate the error in θ (given by
δT) to the variance of the estimator ∆T. Using ∆T = T(x) − 〈T〉θ , we find

〈(∆T)2〉θ =

∣

∣

∣

∣

d〈T〉θ
dθ

∣

∣

∣

∣

2
(〈

(δT)2
〉

θ
− 〈δT〉2

θ

)

. (24)

The Cramér-Rao bound then follows immediately:

〈(δT)2〉θ ≥
1

N F(θ)
+ 〈δT〉2

θ ≥
1

N F(θ)
. (25)

Furthermore, the Fisher information can be expressed in terms of the statistical distance
ds:

F(θ) =
∫

dx
1

p(x|θ)

(

∂p(x|θ)

∂θ

)2

=

(

ds

dθ

)2

. (26)

So the Fisher information is the square of the derivative to θ of the statistical distance.

Finally, let’s return to the distinguishability criterion between two probability dis-
tributions stated on page 4. If we take the variance of an unbiased estimator to be ∆θ

and we consider two probability distributions with (finite but small) distance (∆s)2 , the
Cramér-Rao bound becomes

(∆θ)2 ≡ 〈(δT)2〉θ ≥
1

NF(θ)
≃

1

N

(

∆s

∆θ

)−2

or N(∆s)2 & 1 , (27)

which we set out to prove.
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